Answer:
Option D
Explanation:
We have
cosecθ−cotθ=2017 ........(i)
∴ cosec \theta +\cot \theta=\frac{1}{2017} ......(ii)
\begin{bmatrix}\because & cosec^{2}\theta-\cot^{2}\theta=1 \\\Rightarrow & cosec \theta-\cot \theta=\frac{1}{cosec \theta+\cot \theta} \end{bmatrix}
Adding Eqs,(i) and (ii) , we get
2 cosec \theta=2017+ \frac{1}{2017}
\Rightarrow cosec \theta= \frac{1}{2} [2017+ \frac{1}{2017}]>0
\theta lie in 1st or II nd quadrant
Substracting Eq.(i) from Eq.(ii) , we get
2\cot \theta= \frac{1}{2017}-2017
\cot \theta= \frac{1}{2}\left(\frac{1}{2017}-2017\right)<0
\theta lie in II nd and III rd quadrant
Hence , \theta lies in II nd quadrant